Semiconductor Stocks List

Related ETFs - A few ETFs which own one or more of the above listed Semiconductor stocks.

Semiconductor Stocks Recent News

Date Stock Title
Apr 24 HTGC Hercules Capital Celebrates 20th Anniversary with $20.0 Billion in Cumulative Originations
Apr 23 MU Why BigBear.ai, Super Micro Computer, Arm Holdings, and Other Artificial Intelligence (AI) Stocks Surged on Tuesday
Apr 23 MU Micron Technology Stock Has 37% Upside, According to 1 Wall Street Analyst
Apr 23 KALU Kaiser Aluminum Q1 2024 Earnings Preview
Apr 23 DCO Ducommun Incorporated receives Lockheed Martin Aeronautics Elite Supplier Award for 2023
Apr 22 DCO Albion River Comments on Recent Statement from Ducommun Board
Apr 22 MTSI How Is The Market Feeling About MACOM Technology Solns?
Apr 22 DD Will DuPont de Nemours (DD) Beat Estimates Again in Its Next Earnings Report?
Apr 22 KALU Kaiser Aluminum (KALU) is a Great Momentum Stock: Should You Buy?
Apr 22 KALU Zacks.com featured highlights include GigaCloud Technology, Murphy USA, HCI Group, Kaiser Aluminum and BrightSphere Investment
Apr 22 KALU Looking for a Fast-paced Momentum Stock at a Bargain? Consider Kaiser (KALU)
Apr 22 MU Top 5 U.S. Giants at Lucrative Valuations Amid April Turmoil
Apr 22 MU Micron, Uber And A Consumer Products Giant On CNBC's 'Final Trades'
Apr 21 DCO Ducommun: Management Expects Margin Expansion And Revenue Growth
Apr 20 HTGC Better High-Yield Buy: Hercules Capital or PennantPark?
Apr 19 MU Why Micron Technology (MU) Shares Are Sliding Today
Apr 19 MU AI investments will help chip sector to recover: Analyst
Apr 19 MU Micron (MU) Up 1.9% Since Last Earnings Report: Can It Continue?
Apr 19 MU Why Micron Technology Is A Solid Investment For The Future Of Data Centers And AI
Apr 19 MU Supermicro Stock Falls Sharply, Continuing Slide as Chip Shares Drop
Semiconductor

A semiconductor material has an electrical conductivity value falling between that of a metal, like copper, gold, etc. and an insulator, such as glass. Their resistance decreases as their temperature increases, which is behaviour opposite to that of a metal. Their conducting properties may be altered in useful ways by the deliberate, controlled introduction of impurities ("doping") into the crystal structure. Where two differently-doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers which include electrons, ions and electron holes at these junctions is the basis of diodes, transistors and all modern electronics. Some examples of semiconductors are silicon, germanium, and gallium arsenide. After silicon, gallium arsenide is the second most common semiconductor used in laser diodes, solar cells, microwave frequency integrated circuits, and others. Silicon is a critical element for fabricating most electronic circuits.
Semiconductor devices can display a range of useful properties such as passing current more easily in one direction than the other, showing variable resistance, and sensitivity to light or heat. Because the electrical properties of a semiconductor material can be modified by doping, or by the application of electrical fields or light, devices made from semiconductors can be used for amplification, switching, and energy conversion.
The conductivity of silicon is increased by adding a small amount of pentavalent (antimony, phosphorus, or arsenic) or trivalent (boron, gallium, indium) atoms (part in 108). This process is known as doping and resulting semiconductors are known as doped or extrinsic semiconductors. Apart from doping, the conductivity of a semiconductor can equally be improved by increasing its temperature. This is contrary to the behaviour of a metal in which conductivity decreases with increase in temperature.
The modern understanding of the properties of a semiconductor relies on quantum physics to explain the movement of charge carriers in a crystal lattice. Doping greatly increases the number of charge carriers within the crystal. When a doped semiconductor contains mostly free holes it is called "p-type", and when it contains mostly free electrons it is known as "n-type". The semiconductor materials used in electronic devices are doped under precise conditions to control the concentration and regions of p- and n-type dopants. A single semiconductor crystal can have many p- and n-type regions; the p–n junctions between these regions are responsible for the useful electronic behavior.
Although some pure elements and many compounds display semiconductor properties, silicon, germanium, and compounds of gallium are the most widely used in electronic devices. Elements near the so-called "metalloid staircase", where the metalloids are located on the periodic table, are usually used as semiconductors.
Some of the properties of semiconductor materials were observed throughout the mid 19th and first decades of the 20th century. The first practical application of semiconductors in electronics was the 1904 development of the cat's-whisker detector, a primitive semiconductor diode used in early radio receivers. Developments in quantum physics in turn allowed the development of the transistor in 1947 and the integrated circuit in 1958.

Browse All Tags