Electromagnetic Radiation Stocks List

Recent Signals

Date Stock Signal Type
2020-01-17 COHU New 52 Week Closing High Bullish
2020-01-17 FLIR Pocket Pivot Bullish Swing Setup
2020-01-17 FLIR Cup with Handle Other
2020-01-17 FN New 52 Week Closing High Bullish
2020-01-17 FN Bollinger Band Squeeze Range Contraction
2020-01-17 FN 180 Bullish Setup Bullish Swing Setup
2020-01-17 FN Upper Bollinger Band Walk Strength
2020-01-17 FN Crossed Above 20 DMA Bullish
2020-01-17 FN Non-ADX 1,2,3,4 Bullish Bullish Swing Setup
2020-01-17 IIVI NR7 Range Contraction
2020-01-17 IIVI NR7-2 Range Contraction
2020-01-17 LEDS Calm After Storm Range Contraction
2020-01-17 LEDS NR7 Range Contraction
2020-01-17 LEDS NR7-2 Range Contraction
2020-01-17 LEDS Volume Surge Other
2020-01-17 LEDS Narrow Range Bar Range Contraction
2020-01-17 LEDS Pocket Pivot Bullish Swing Setup
2020-01-17 LITE Bollinger Band Squeeze Range Contraction
2020-01-17 LITE Non-ADX 1,2,3,4 Bullish Bullish Swing Setup
2020-01-17 NOVT New 52 Week High Strength
2020-01-17 NOVT Upper Bollinger Band Walk Strength
2020-01-17 NOVT New 52 Week Closing High Bullish
2020-01-17 VREX Bearish Engulfing Bearish
2020-01-17 VREX Stochastic Sell Signal Bearish
2020-01-17 VREX Upper Bollinger Band Walk Strength

In physics, electromagnetic radiation (EM radiation or EMR) refers to the waves (or their quanta, photons) of the electromagnetic field, propagating (radiating) through space, carrying electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields that propagate at the speed of light, which, in a vacuum, is commonly denoted c. In homogeneous, isotropic media, the oscillations of the two fields are perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave. The wavefront of electromagnetic waves emitted from a point source (such as a light bulb) is a sphere. The position of an electromagnetic wave within the electromagnetic spectrum can be characterized by either its frequency of oscillation or its wavelength. Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter. In order of increasing frequency and decreasing wavelength these are: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.Electromagnetic waves are emitted by electrically charged particles undergoing acceleration, and these waves can subsequently interact with other charged particles, exerting force on them. EM waves carry energy, momentum and angular momentum away from their source particle and can impart those quantities to matter with which they interact. Electromagnetic radiation is associated with those EM waves that are free to propagate themselves ("radiate") without the continuing influence of the moving charges that produced them, because they have achieved sufficient distance from those charges. Thus, EMR is sometimes referred to as the far field. In this language, the near field refers to EM fields near the charges and current that directly produced them specifically, electromagnetic induction and electrostatic induction phenomena.
In quantum mechanics, an alternate way of viewing EMR is that it consists of photons, uncharged elementary particles with zero rest mass which are the quanta of the electromagnetic force, responsible for all electromagnetic interactions. Quantum electrodynamics is the theory of how EMR interacts with matter on an atomic level. Quantum effects provide additional sources of EMR, such as the transition of electrons to lower energy levels in an atom and black-body radiation. The energy of an individual photon is quantized and is greater for photons of higher frequency. This relationship is given by Planck's equation E = hν, where E is the energy per photon, ν is the frequency of the photon, and h is Planck's constant. A single gamma ray photon, for example, might carry ~100,000 times the energy of a single photon of visible light.
The effects of EMR upon chemical compounds and biological organisms depend both upon the radiation's power and its frequency. EMR of visible or lower frequencies (i.e., visible light, infrared, microwaves, and radio waves) is called non-ionizing radiation, because its photons do not individually have enough energy to ionize atoms or molecules or break chemical bonds. The effects of these radiations on chemical systems and living tissue are caused primarily by heating effects from the combined energy transfer of many photons. In contrast, high frequency ultraviolet, X-rays and gamma rays are called ionizing radiation, since individual photons of such high frequency have enough energy to ionize molecules or break chemical bonds. These radiations have the ability to cause chemical reactions and damage living cells beyond that resulting from simple heating, and can be a health hazard.

More about Electromagnetic Radiation