Insulin Stocks List

Related ETFs - A few ETFs which own one or more of the above listed Insulin stocks.

Insulin Stocks Recent News

Date Stock Title
Nov 21 NVO Eli Lilly Stock Tumbles As Kennedy Targets Weight Loss Drugs
Nov 21 NVO Pfizer Secures Approval for Hemophilia Drug Hympavzi in the EU
Nov 21 NVO Eli Lilly and 2 More Drug Stocks to Buy After RFK-Inspired Drop
Nov 20 SNY CDC warns of an imminent spike in COVID, flu cases
Nov 20 JNJ Update: Market Chatter: Johnson & Johnson, Merck Cut Jobs in China
Nov 20 NVO More companies covering weight loss drugs for their employees
Nov 20 NVO Weight loss drug makers want more insurance plans to cover Wegovy and Zepbound
Nov 20 SNY Here’s What Drove Sanofi’s (SNY) Earnings
Nov 20 SNY Sanofi: Information concerning the total number of voting rights and shares - October 2024
Nov 20 NVO Is Novo Nordisk Stock a Buy Right Now?
Nov 20 NVO RFK Jr. Sparks New Worries About Obesity Drugs. Here’s What Investors Should Focus on Instead.
Nov 20 HALO Halozyme: Fabless Or Not, The Stock Is Now A Steal On Evotec Deal
Nov 19 NVO Novo Nordisk semaglutide phase 3 trial for MASH meets primary endpoints
Nov 19 NVO Sector Update: Health Care Stocks Decline
Nov 19 NVO Novo Nordisk Unusual Options Activity For November 19
Nov 19 NVO Sector Update: Health Care Stocks Mixed Tuesday Afternoon
Nov 19 HALO 3 Reasons Why Growth Investors Shouldn't Overlook Halozyme Therapeutics (HALO)
Nov 19 JNJ Large caps in trouble? Key takeaways from Tommy Tuberville's latest trades
Nov 19 HALO HALO vs. FOLD: Which Stock Should Value Investors Buy Now?
Nov 19 JNJ Johnson & Johnson: Policy Uncertainty Elevated, But Shares Remain Inexpensive
Insulin

Insulin (from Latin insula, island) is a peptide hormone produced by beta cells of the pancreatic islets; it is considered to be the main anabolic hormone of the body. It regulates the metabolism of carbohydrates, fats and protein by promoting the absorption of carbohydrates, especially glucose from the blood into liver, fat and skeletal muscle cells. In these tissues the absorbed glucose is converted into either glycogen via glycogenesis or fats (triglycerides) via lipogenesis, or, in the case of the liver, into both. Glucose production and secretion by the liver is strongly inhibited by high concentrations of insulin in the blood. Circulating insulin also affects the synthesis of proteins in a wide variety of tissues. It is therefore an anabolic hormone, promoting the conversion of small molecules in the blood into large molecules inside the cells. Low insulin levels in the blood have the opposite effect by promoting widespread catabolism, especially of reserve body fat.
Beta cells are sensitive to glucose concentrations, also known as blood sugar levels. When the glucose level is high, the beta cells secrete insulin into the blood; when glucose levels are low, secretion of insulin is inhibited. Their neighboring alpha cells, by taking their cues from the beta cells, secrete glucagon into the blood in the opposite manner: increased secretion when blood glucose is low, and decreased secretion when glucose concentrations are high. Glucagon, through stimulating the liver to release glucose by glycogenolysis and gluconeogenesis, has the opposite effect of insulin. The secretion of insulin and glucagon into the blood in response to the blood glucose concentration is the primary mechanism of glucose homeostasis.If beta cells are destroyed by an autoimmune reaction, insulin can no longer be synthesized or be secreted into the blood. This results in type 1 diabetes mellitus, which is characterized by abnormally high blood glucose concentrations, and generalized body wasting. In type 2 diabetes mellitus the destruction of beta cells is less pronounced than in type 1 diabetes, and is not due to an autoimmune process. Instead there is an accumulation of amyloid in the pancreatic islets, which likely disrupts their anatomy and physiology. The pathogenesis of type 2 diabetes is not well understood but patients exhibit a reduced population of islet beta-cells, reduced secretory function of islet beta-cells that survive, and peripheral tissue insulin resistance. Type 2 diabetes is characterized by high rates of glucagon secretion into the blood which are unaffected by, and unresponsive to the concentration of glucose in the blood. Insulin is still secreted into the blood in response to the blood glucose. As a result, the insulin levels, even when the blood sugar level is normal, are much higher than they are in healthy persons.
The human insulin protein is composed of 51 amino acids, and has a molecular mass of 5808 Da. It is a dimer of an A-chain and a B-chain, which are linked together by disulfide bonds. Insulin's structure varies slightly between species of animals. Insulin from animal sources differs somewhat in effectiveness (in carbohydrate metabolism effects) from human insulin because of these variations. Porcine insulin is especially close to the human version, and was widely used to treat type 1 diabetics before human insulin could be produced in large quantities by recombinant DNA technologies.The crystal structure of insulin in the solid state was determined by Dorothy Hodgkin. It is on the WHO Model List of Essential Medicines, the most important medications needed in a basic health system.

Browse All Tags