Genotyping Stocks List
Symbol | Grade | Name | % Change | |
---|---|---|---|---|
LH | B | Laboratory Corporation of America Holdings | -1.25 | |
TEM | C | Tempus AI, Inc. | -7.47 | |
ILMN | C | Illumina, Inc. | -5.05 | |
A | D | Agilent Technologies, Inc. | -2.42 |
Related Industries: Diagnostics & Research Health Information Services
Symbol | Grade | Name | Weight | |
---|---|---|---|---|
EDOC | C | Global X Telemedicine & Digital Health ETF | 12.08 | |
GNOM | F | Global X Genomics & Biotechnology ETF | 8.07 | |
PBE | D | PowerShares Dynamic Biotech & Genome | 5.74 | |
BIS | B | ProShares UltraShort Nasdaq Biotechnology | 5.67 | |
QQQA | B | ProShares Nasdaq-100 Dorsey Wright Momentum ETF | 4.66 |
Compare ETFs
- Genotyping
Genotyping is the process of determining differences in the genetic make-up (genotype) of an individual by examining the individual's DNA sequence using biological assays and comparing it to another individual's sequence or a reference sequence. It reveals the alleles an individual has inherited from their parents. Traditionally genotyping is the use of DNA sequences to define biological populations by use of molecular tools. It does not usually involve defining the genes of an individual.
Current methods of genotyping include restriction fragment length polymorphism identification (RFLPI) of genomic DNA, random amplified polymorphic detection (RAPD) of genomic DNA, amplified fragment length polymorphism detection (AFLPD), polymerase chain reaction (PCR), DNA sequencing, allele specific oligonucleotide (ASO) probes, and hybridization to DNA microarrays or beads. Genotyping is important in research of genes and gene variants associated with disease. Due to current technological limitations, almost all genotyping is partial. That is, only a small fraction of an individual’s genotype is determined, such as with (epi)GBS (Genotyping by sequencing) or RADseq. New mass-sequencing technologies promise to provide whole-genome genotyping (or whole genome sequencing) in the future.
Genotyping applies to a broad range of individuals, including microorganisms. For example, viruses and bacteria can be genotyped. Genotyping in this context may help in controlling the spreading of pathogens, by tracing the origin of outbreaks. This area is often referred to as molecular epidemiology or forensic microbiology.
Humans can also be genotyped. For example, when testing fatherhood or motherhood, scientists typically only need to examine 10 or 20 genomic regions (like single-nucleotide polymorphism (SNPs)), which represent a tiny fraction of the human genome.
When genotyping transgenic organisms, a single genomic region may be all that needs to be examined to determine the genotype. A single PCR assay is typically enough to genotype a transgenic mouse; the mouse is the mammalian model of choice for much of medical research today.
Popular Now
Recent Comments
- TraderMike on BOOT
- Dr_Duru on BOOT
- TraderMike on Stochastic Reached Oversold
- SuccessfulGrasshopper897 on Stochastic Reached Oversold
- Cos3 on Adding float as advanced filter criteria?
From the Blog
Featured Articles