Signal Transduction Stocks List
Symbol | Grade | Name | % Change | |
---|---|---|---|---|
CELC | F | Celcuity Inc. | 3.61 | |
IMRX | F | Immuneering Corporation | -0.47 | |
GPCR | F | Structure Therapeutics Inc. | 11.00 | |
KURA | F | Kura Oncology, Inc. | 7.36 | |
CRVO | F | CervoMed Inc. | 0.21 |
Related Industries: Biotechnology Diagnostics & Research Medical Care Facilities
Symbol | Grade | Name | Weight | |
---|---|---|---|---|
CANC | F | Tema Oncology ETF | 6.5 | |
IDNA | F | iShares Genomics Immunology and Healthcare ETF | 5.9 | |
CNCR | F | Loncar Cancer Immunotherapy ETF | 3.28 | |
MNTL | D | Tema Neuroscience and Mental Health ETF | 1.9 | |
XBI | D | SPDR S&P Biotech ETF | 1.74 |
Compare ETFs
- Signal Transduction
Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellular response. Proteins responsible for detecting stimuli are generally termed receptors, although in some cases the term sensor is used. The changes elicited by ligand binding (or signal sensing) in a receptor give rise to a signaling cascade, which is a chain of biochemical events along a signaling pathway. When signaling pathways interact with one another they form networks, which allow cellular responses to be coordinated, often by combinatorial signaling events. At the molecular level, such responses include changes in the transcription or translation of genes, and post-translational and conformational changes in proteins, as well as changes in their location. These molecular events are the basic mechanisms controlling cell growth, proliferation, metabolism and many other processes. In multicellular organisms, signal transduction pathways have evolved to regulate cell communication in a wide variety of ways.
Each component (or node) of a signaling pathway is classified according to the role it plays with respect to the initial stimulus. Ligands are termed first messengers, while receptors are the signal transducers, which then activate primary effectors. Such effectors are often linked to second messengers, which can activate secondary effectors, and so on. Depending on the efficiency of the nodes, a signal can be amplified (a concept known as signal gain), so that one signaling molecule can generate a response involving hundreds to millions of molecules. As with other signals, the transduction of biological signals is characterised by delay, noise, signal feedback and feedforward and interference, which can range from negligible to pathological. With the advent of computational biology, the analysis of signaling pathways and networks has become an essential tool to understand cellular functions and disease, including signaling rewiring mechanisms underlying responses to acquired drug resistance.
Recent Comments
- TraderMike on BOOT
- Dr_Duru on BOOT
- TraderMike on Stochastic Reached Oversold
- SuccessfulGrasshopper897 on Stochastic Reached Oversold
- Cos3 on Adding float as advanced filter criteria?
From the Blog
Featured Articles