Universe Stocks List

Related ETFs - A few ETFs which own one or more of the above listed Universe stocks.

Universe Stocks Recent News

Date Stock Title
May 30 ENPH Enphase Energy Expands Deployments of NEM 3.0 Product Solution with Installers in California
May 30 ENPH Enphase Energy Insiders Added US$5.00m Of Stock To Their Holdings
May 29 GHM Graham Corporation Announces Fourth Quarter Fiscal Year 2024 Financial Results Conference Call and Webcast
May 29 ENPH Enphase Energy: Solar Giant Shines With Golden Cross Breakout
May 29 ENPH Enphase Energy (ENPH) Begins IQ Battery 5P Shipment in Mexico
May 28 FSLR First Solar Stock (NASDAQ:FSLR): Cheaply Valued and Benefiting from AI
May 28 ENPH Enphase: Managing The Solar Crash Better Than Its Peer
May 28 FCEL FuelCell Energy wins module service deal with Korea's Gyeonggi Green Energy
May 28 FSLR FSLR Stock Today: Why First Solar Doesn't Have To Rise For This Bullish Option To Profit
May 28 FCEL FuelCell Energy and Gyeonggi Green Energy Announce Agreement for Purchase of Fuel Cell Modules and Service Agreement for World’s Largest Fuel Cell Power Platform
May 28 ENPH Investors Heavily Search Enphase Energy, Inc. (ENPH): Here is What You Need to Know
May 28 ENPH Enphase Energy Launches IQ Battery 5P in Mexico
May 28 JKS Returns On Capital Are Showing Encouraging Signs At JinkoSolar Holding (NYSE:JKS)
May 27 FSLR Why First Solar Is A Must-Watch Stock In The AI Era
May 27 THRM Is Now An Opportune Moment To Examine Gentherm Incorporated (NASDAQ:THRM)?
May 27 GHM With 74% ownership of the shares, Graham Corporation (NYSE:GHM) is heavily dominated by institutional owners
May 26 ENPH Is Enphase Energy Inc. (NASDAQ:ENPH) the Top Alternative Energy Stock Pick of Analysts?
May 26 FSLR Is First Solar, Inc. (NASDAQ:FSLR) the Best Alternative Energy Stock to Buy Now?
May 26 FSLR Moderna Was Among The Best Performing Large-Cap Stocks Last Week (May 20-May 26, 2024): Are They In Your Portfolio?
May 25 FSLR Wall Street Breakfast: What Moved Markets
Universe

The Universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. While the spatial size of the entire Universe is still unknown, it is possible to measure the observable universe.
The earliest scientific models of the Universe were developed by ancient Greek and Indian philosophers and were geocentric, placing Earth at the centre of the Universe. Over the centuries, more precise astronomical observations led Nicolaus Copernicus to develop the heliocentric model with the Sun at the centre of the Solar System. In developing the law of universal gravitation, Sir Isaac Newton built upon Copernicus' work as well as observations by Tycho Brahe and Johannes Kepler's laws of planetary motion.
Further observational improvements led to the realization that the Sun is one of hundreds of billions of stars in the Milky Way, which is one of at least hundreds of billions of galaxies in the Universe. Many of the stars in our galaxy have planets. At the largest scale galaxies are distributed uniformly and the same in all directions, meaning that the Universe has neither an edge nor a center. At smaller scales, galaxies are distributed in clusters and superclusters which form immense filaments and voids in space, creating a vast foam-like structure. Discoveries in the early 20th century have suggested that the Universe had a beginning and that space has been expanding since then, and is currently still expanding at an increasing rate.The Big Bang theory is the prevailing cosmological description of the development of the Universe. Under this theory, space and time emerged together 13.799±0.021 billion years ago with a fixed amount of energy and matter that has become less dense as the Universe has expanded. After an initial accelerated expansion at around 10−32 seconds, and the separation of the four known fundamental forces, the Universe gradually cooled and continued to expand, allowing the first subatomic particles and simple atoms to form. Dark matter gradually gathered forming a foam-like structure of filaments and voids under the influence of gravity. Giant clouds of hydrogen and helium were gradually drawn to the places where dark matter was most dense, forming the first galaxies, stars, and everything else seen today. It is possible to see objects that are now further away than 13.799 billion light-years because space itself has expanded, and it is still expanding today. This means that objects which are now up to 46.5 billion light-years away can still be seen in their distant past, because in the past when their light was emitted, they were much closer to the Earth.
From studying the movement of galaxies, it has been discovered that the universe contains much more matter than is accounted for by visible objects; stars, galaxies, nebulas and interstellar gas. This unseen matter is known as dark matter (dark means that there is a wide range of strong indirect evidence that it exists, but we have not yet detected it directly). The ΛCDM model is the most widely accepted model of our universe. It suggests that about 69.2%±1.2% [2015] of the mass and energy in the universe is a cosmological constant (or, in extensions to ΛCDM, other forms of dark energy such as a scalar field) which is responsible for the current expansion of space, and about 25.8%±1.1% [2015] is dark matter. Ordinary ("baryonic") matter is therefore only 4.9% [2015] of the physical universe. Stars, planets, and visible gas clouds only form about 6% of ordinary matter, or about 0.3% of the entire universe.There are many competing hypotheses about the ultimate fate of the universe and about what, if anything, preceded the Big Bang, while other physicists and philosophers refuse to speculate, doubting that information about prior states will ever be accessible. Some physicists have suggested various multiverse hypotheses, in which the Universe might be one among many universes that likewise exist.

Browse All Tags