Fuel Cell Stocks List

Related ETFs - A few ETFs which own one or more of the above listed Fuel Cell stocks.

Fuel Cell Stocks Recent News

Date Stock Title
May 10 PLUG Q1 2024 Plug Power Inc Earnings Call
May 9 PLUG Plug Power (PLUG) Q1 2024 Earnings Call Transcript
May 9 PLUG Plug Power Inc. (PLUG) Q1 2024 Earnings Call Transcript
May 9 PLUG Plug Power Faces Stiff Headwinds In Q1, Optimistic About Future Margins
May 9 PLUG Compared to Estimates, Plug Power (PLUG) Q1 Earnings: A Look at Key Metrics
May 9 PLUG Plug Power slides after posting larger than forecast Q1 loss
May 9 PLUG Plug Power (PLUG) Reports Q1 Loss, Lags Revenue Estimates
May 9 PLUG 1 Reason Goldman Sachs Analysts Are Skeptical of Plug Power Stock
May 9 PLUG Plug Power GAAP EPS of -$0.46 misses by $0.13, revenue of $120.3M misses by $37.35M
May 9 PLUG Plug Announces First Quarter 2024 Financial Results
May 9 PLUG Forget Nvidia: These 3 Small-Cap Stocks Offer Up to 557% Upside, According to Select Wall Street Analysts
May 8 BLDP Ballard Power Systems Inc. (NASDAQ:BLDP) Q1 2024 Earnings Call Transcript
May 8 PLUG Plug Power Q1 results preview: Cost cutting and capital raises in focus
May 8 BLDP Ballard Power Systems: Strong Q1 Order Intake But Outlook Still Murky
May 8 HJEN Energy Shift: Shell Offloads Singapore Energy And Chemicals Park To Glencore-Chandra Asri Capital Joint Venture
May 7 BLDP Ballard Power Systems Inc. (BLDP) Q1 2024 Earnings Call Transcript
May 7 PLUG What to Note Ahead of Plug Power's (PLUG) Q1 Earnings Release?
May 7 BLDP Compared to Estimates, Ballard (BLDP) Q1 Earnings: A Look at Key Metrics
May 7 BLDP Ballard Power Systems (BLDP) Reports Q1 Loss, Misses Revenue Estimates
May 7 HYZN Hyzon and New Way Unveil North America's First Hydrogen Fuel Cell Refuse Truck at Waste Expo
Fuel Cell

A fuel cell is an electrochemical cell that converts the potential energy from a fuel into electricity through an electrochemical reaction of hydrogen fuel with oxygen or another oxidizing agent. Fuel cells are different from batteries in requiring a continuous source of fuel and oxygen (usually from air) to sustain the chemical reaction, whereas in a battery the chemical energy comes from chemicals already present in the battery. Fuel cells can produce electricity continuously for as long as fuel and oxygen are supplied.
The first fuel cells were invented in 1838. The first commercial use of fuel cells came more than a century later in NASA space programs to generate power for satellites and space capsules. Since then, fuel cells have been used in many other applications. Fuel cells are used for primary and backup power for commercial, industrial and residential buildings and in remote or inaccessible areas. They are also used to power fuel cell vehicles, including forklifts, automobiles, buses, boats, motorcycles and submarines.
There are many types of fuel cells, but they all consist of an anode, a cathode, and an electrolyte that allows positively charged hydrogen ions (protons) to move between the two sides of the fuel cell. At the anode a catalyst causes the fuel to undergo oxidation reactions that generate protons (positively charged hydrogen ions) and electrons. The protons flow from the anode to the cathode through the electrolyte after the reaction. At the same time, electrons are drawn from the anode to the cathode through an external circuit, producing direct current electricity. At the cathode, another catalyst causes hydrogen ions, electrons, and oxygen to react, forming water. Fuel cells are classified by the type of electrolyte they use and by the difference in startup time ranging from 1 second for proton exchange membrane fuel cells (PEM fuel cells, or PEMFC) to 10 minutes for solid oxide fuel cells (SOFC). A related technology is flow batteries, in which the fuel can be regenerated by recharging. Individual fuel cells produce relatively small electrical potentials, about 0.7 volts, so cells are "stacked", or placed in series, to create sufficient voltage to meet an application's requirements. In addition to electricity, fuel cells produce water, heat and, depending on the fuel source, very small amounts of nitrogen dioxide and other emissions. The energy efficiency of a fuel cell is generally between 40–60%; however, if waste heat is captured in a cogeneration scheme, efficiencies up to 85% can be obtained.
The fuel cell market is growing, and in 2013 Pike Research estimated that the stationary fuel cell market will reach 50 GW by 2020.

Browse All Tags