Solid State Drive Stocks List

Solid State Drive Stocks Recent News

Date Stock Title
May 9 STX Amazon, Abbott Laboratories And 2 Other Stocks Insiders Are Selling
May 8 MU Micron Technology (MU) Announces Availability of New Product
May 8 MU US chip manufacturing capacity projected to triple by 2032, fueled by CHIPS Act: Industry leader
May 7 MU 12 Best Artificial Intelligence Stocks to Buy Now According to Wall Street Analysts
May 7 STX Hedge Fund Legend Druckenmiller Shares His Top Secrets For 30% Returns
May 7 MU Micron Technology Announces Upcoming Investor Events
May 7 MU Micron Delivers Crucial LPCAMM2 with LPDDR5X Memory for the New AI-Ready Lenovo ThinkPad P1 Gen 7 Workstation
May 7 MU Investor Optimism Decreases Slightly, But Dow Records Gains For 4th Day
May 6 MU Micron gains as Baird upgrades on HBM strength; adds to top semi ideas
May 6 MU Why One Analyst Upgraded Micron’s Stock After 3 Years
May 6 MU Micron stock up on Baird upgrade
May 6 SIMO Silicon Motion soars after upgrade as it catches benefits of AI: Morgan Stanley
May 6 MU Micron Upgrade, Nvidia Rally Power Nasdaq Higher
May 6 MU Micron upgraded, Peloton downgraded: Wall Street's top analyst calls
May 6 SIMO Silicon Motion Technology Stock: A Deep Dive Into Analyst Perspectives (11 Ratings)
May 6 MU Citi stays bullish on chips as March sales surge; analog and microcontroller lead
May 6 MU Micron, Qualcomm And 2 Other Stocks Insiders Are Selling
May 5 SIMO Silicon Motion Technology Corporation's (NASDAQ:SIMO) Stock On An Uptrend: Could Fundamentals Be Driving The Momentum?
May 5 SIMO Just Two Days Till Silicon Motion Technology Corporation (NASDAQ:SIMO) Will Be Trading Ex-Dividend
May 4 STX Morgan Stanley’s Top 15 Stock Picks for 2024
Solid State Drive

A solid-state drive (SSD) is a solid-state storage device that uses integrated circuit assemblies to store data persistently, typically using flash memory, and functioning as secondary storage in the hierarchy of computer storage. It is also sometimes called a solid-state device or a solid-state disk, even though SSDs lack the physical spinning disks and movable read–write heads used in hard disk drives (HDDs) and floppy disks.Compared with electromechanical drives, SSDs are typically more resistant to physical shock, run silently, and have quicker access time and lower latency. SSDs store data in semiconductor cells. As of 2019, cells can contain between 1 and 4 bits of data. SSD storage devices vary in their properties according to the number of bits stored in each cell, with single-bit cells ("SLC") being generally the most reliable, durable, fast, and expensive type, compared with 2- and 3-bit cells ("MLC" and "TLC"), and finally quad-bit cells ("QLC") being used for consumer devices that do not require such extreme properties and are the cheapest of the four. In addition, 3D XPoint memory (sold by Intel under the Optane brand), stores data by changing the electrical resistance of cells instead of storing electrical charges in cells, and SSDs made from RAM can be used for high speed, when data persistence after power loss is not required, or may use battery power to retain data when its usual power source is unavailable. Hybrid drives or solid-state hybrid drives (SSHDs), such as Apple's Fusion Drive, combine features of SSDs and HDDs in the same unit using both flash memory and a HDD in order to improve the performance of frequently-accessed data.SSDs based on NAND Flash will slowly leak charge over time if left for long periods without power. This causes worn-out drives (that have exceeded their endurance rating) to start losing data typically after one year (if stored at 30 °C) to two years (at 25 °C) in storage; for new drives it takes longer. Therefore, SSDs are not suitable for archival storage. 3D XPoint is a possible exception to this rule, however it is a relatively new technology with unknown long-term data-retention characteristics.
SSDs can use traditional HDD interfaces and form factors, or newer interfaces and form factors that exploit specific advantages of the flash memory in SSDs. Traditional interfaces (e.g. SATA and SAS) and standard HDD form factors allow such SSDs to be used as drop-in replacements for HDDs in computers and other devices. Newer form factors such as mSATA, M.2, U.2, NF1, XFMEXPRESS and EDSFF (formerly known as Ruler SSD) and higher speed interfaces such as NVM Express (NVMe) over PCI Express can further increase performance over HDD performance.SSDs have a limited number of writes, and will be slower the more filled up they are.

Browse All Tags