Artificial Intelligence Stocks List


Related Industries: Aerospace & Defense Auto Manufacturers Auto Parts Biotechnology Capital Markets Computer Hardware Conglomerates Consumer Electronics Credit Services Diagnostics & Research Electronic Gaming & Multimedia Engineering & Construction Farm Products Health Information Services Information Technology Services Internet Content & Information Internet Content & Information Marketing Services Medical Devices Medical Instruments & Supplies Other Packaging & Containers Railroads Real Estate Services Scientific & Technical Instruments Security & Protection Services Semiconductors Shell Companies Software - Application Software - Infrastructure Solar Specialty Industrial Machinery Specialty Retail Staffing & Employment Services Telecom Services

Artificial Intelligence Stocks Recent News

Date Stock Title
Nov 23 NVDA What Moved Markets This Week
Nov 23 NVDA 3 Millionaire-Maker Artificial Intelligence (AI) Stocks
Nov 23 NVDA The Next AI Battle: Who Can Get the Most Nvidia Chips in One Place
Nov 23 NVDA Meet the Supercharged Growth Stock Poised to Hit $10 Trillion By 2030 According to 1 Wall Street Analyst
Nov 23 NVDA Nvidia Stock Just Did Something It Has Never Done Before. History Says the AI Stock Could Do This Next.
Nov 23 NVDA Jensen Huang's Nvidia Fast-Tracks Samsung's AI Memory Certification As AI Giant Looks To Catch Up To Demand
Nov 23 NVDA Nvidia's Blackwell Launch Is on the Way. 3 Things You Need to Know.
Nov 23 NVDA Meta Faces Multibillion-Dollar Lawsuit As Supreme Court Dismisses Appeal In Cambridge Analytica Data Scandal
Nov 23 NVDA Nvidia CEO says global cooperation in tech will continue under Trump administration
Nov 23 NVDA Nvidia CEO Huang says 'the age of AI has started'
Nov 22 NVDA Amphenol Corporation (APH) Poised to Benefit from NVIDIA’s Blackwell Ramp-Up, Evercore Highlights in AI Industry Note
Nov 22 NVDA The Score: Target, Super Micro Computer, Alphabet and More Stocks That Defined the Week
Nov 22 NVDA Nvidia-backed CoreWeave targets over $35B valuation in IPO next year - Reuters
Nov 22 NVDA S&P 500 Gains and Losses Today: Supermicro Stock Rallies To Finish Strong Week
Nov 22 NVDA Is AMD Stock a Buy Now?
Nov 22 NVDA Nvidia earnings, bitcoin, Walmart & Target: In Case You Missed It
Nov 22 NVDA Supermicro Stock Jumps 12% Friday to Cap Off a Wild Week
Nov 22 NVDA Dow Jones Futures: Stay Cool In Hot Market; Forget Nvidia, Meet The New AI Chip Leader
Nov 22 NVDA Wall Street Rebounds Without Its AI Darling's Boost, King Dollar Maintains Dominance While Bitcoin Defies Gravity: This Week In The Markets
Nov 22 NVDA AI is in the 'building stage,' will be 'life-changing': Strategist
Artificial Intelligence

In computer science, artificial intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and other animals. Computer science defines AI research as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals. More in detail, Kaplan and Haenlein define AI as “a system’s ability to correctly interpret external data, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation”. Colloquially, the term "artificial intelligence" is applied when a machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving".The scope of AI is disputed: as machines become increasingly capable, tasks considered as requiring "intelligence" are often removed from the definition, a phenomenon known as the AI effect, leading to the quip in Tesler's Theorem, "AI is whatever hasn't been done yet." For instance, optical character recognition is frequently excluded from "artificial intelligence", having become a routine technology. Modern machine capabilities generally classified as AI include successfully understanding human speech, competing at the highest level in strategic game systems (such as chess and Go), autonomously operating cars, and intelligent routing in content delivery networks and military simulations.
Borrowing from the management literature, Kaplan and Haenlein classify artificial intelligence into three different types of AI systems: analytical, human-inspired, and humanized artificial intelligence. Analytical AI has only characteristics consistent with cognitive intelligence generating cognitive representation of the world and using learning based on past experience to inform future decisions. Human-inspired AI has elements from cognitive as well as emotional intelligence, understanding, in addition to cognitive elements, also human emotions considering them in their decision making. Humanized AI shows characteristics of all types of competencies (i.e., cognitive, emotional, and social intelligence), able to be self-conscious and self-aware in interactions with others.
Artificial intelligence was founded as an academic discipline in 1956, and in the years since has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success and renewed funding. For most of its history, AI research has been divided into subfields that often fail to communicate with each other. These sub-fields are based on technical considerations, such as particular goals (e.g. "robotics" or "machine learning"), the use of particular tools ("logic" or artificial neural networks), or deep philosophical differences. Subfields have also been based on social factors (particular institutions or the work of particular researchers).The traditional problems (or goals) of AI research include reasoning, knowledge representation, planning, learning, natural language processing, perception and the ability to move and manipulate objects. General intelligence is among the field's long-term goals. Approaches include statistical methods, computational intelligence, and traditional symbolic AI. Many tools are used in AI, including versions of search and mathematical optimization, artificial neural networks, and methods based on statistics, probability and economics. The AI field draws upon computer science, information engineering, mathematics, psychology, linguistics, philosophy, and many others.
The field was founded on the claim that human intelligence "can be so precisely described that a machine can be made to simulate it". This raises philosophical arguments about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence which are issues that have been explored by myth, fiction and philosophy since antiquity. Some people also consider AI to be a danger to humanity if it progresses unabated. Others believe that AI, unlike previous technological revolutions, will create a risk of mass unemployment.In the twenty-first century, AI techniques have experienced a resurgence following concurrent advances in computer power, large amounts of data, and theoretical understanding; and AI techniques have become an essential part of the technology industry, helping to solve many challenging problems in computer science, software engineering and operations research.

Browse All Tags